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Abstract. Among many other results, Arnold
Sommerfeld gave in his article the correct expression
for the relativistic bound-state energy levels of the
hydrogen atom, well before the development of wave
mechanics, clear ideas about the electron spin, and
Dirac’s relativistic wave equation. He correctly
attributed the fine structure of atomic spectra to
relativistic effects, and thus published the first paper
giving a quantitative perspective on relativistic quantum
chemistry.
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Sommerfeld’s paper features three major sections, each
presenting new ideas for the explanation of the pheno-
menology of the spectra of hydrogen and hydrogen-like
atoms. The first section develops the theory of the
Balmer series in the spectrum of the hydrogen atom. The
theoretical method employed is the application of Bohr—
Wilson—-Sommerfeld quantization rules to the nonrela-
tivistic bound-state Kepler problem, i.e., the physics of a
charged body moving in an attractive central potential.
The extension of previous ad hoc quantization rules to
phase integrals, enabling the application of the “old
quantum theory” to nonspherical orbits, is introduced in
this section. Sommerfeld uses these new rules to derive
the expressions for the elliptic (bound-state) orbits, in
particular the ones with nonspherical symmetry, i.e.,
nonvanishing eccentricity, &.

The second section deals with the fine structure of the
hydrogen spectral lines. The discussion of the bound-
state Kepler problem is extended to the relativistic case.
Following an idea of Bohr [1], who had already
conjectured that the fine structure of the hydrogen
spectrum could be a relativistic effect proportional to
¢* /l°c?, the fine structure of the hydrogen spectrum is

thus explained using the ‘“‘quantized” result of this
calculation. The fine-structure constant is introduced
as a measure of the size of the relativistic effects.
It is subsequently used as an expansion parameter for
various quantities, thus defining a ‘‘nonrelativistic
limit”’. The separation of kinematical relativistic effects
and fine-structure splitting is discussed considering the
spherical orbits.

In the third section, X-ray spectra (Rontgenspektren)
of the hydrogen atom are discussed. The principles de-
veloped in the first two parts of the paper are applied to
inner-shell spectroscopy. The paper is characterized by a
quick adaptation and rapid development of the ideas of
the “old quantum theory” introduced by Bohr, which
was vividly discussed in the contemporary literature
[2-4]. The simultaneous treatment of relativity and
quantum effects is the first of its kind.

Sommerfeld’s quantization rules
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for a system with D degrees of freedom are not
independent of the coordinate system, and he had to
carry out an explicit separation of variables in order to
apply them. Einstein [5] reinvestigated the problem and,
besides giving a coordinate-invariant formulation of the
quantum conditions, pointed out that a quantization by
means of classical action integrals is possible only for
integrable systems. These quantization rules for integr-
able systems were later refined by Keller [6] and are
known as Einstein—Brillouin—Keller rules. The method
of semiclassical quantization was revived in the early
1980s, when Gutzwiller [7] found a way to apply
semiclassical quantization also to nonintegrable systems.
His method is based on the Feynman path integral and
its expansion around closed classical paths in phase
space, the “periodic orbits”, and is nowadays instru-
mental in the context of strongly chaotic systems. For an
account of these developments see the recent monograph
by Grosche and Steiner [8].

In the following I shall focus on the second section of
the paper, dealing with fine structure, since to some extent



it survived the quantum revolutions of the 1920s, and
until the end of the century still fostered interesting in-
sight, in particular into symmetry aspects of the problem.

The results presented in Sommerfeld’s papers are re-

markable for three reasons. Sommerfelds tackled (and
successfully solved) a problem for which the appropriate
theoretical tools were only available a decade later. This
fact has been called the “Sommerfeld puzzle”, and a
solution to the puzzle was given in a beautiful paper by
Biedenharn [9], addressing this issue in the following
words:
“Clearly Sommerfeld’s methods were heuristic (Bohr quantization
rules), out-dated by two revolutions (Heisenberg—Schrodinger
nonrelativistic quantum mechanics and Dirac’s relativistic quan-
tum mechanics) and his methods obviously had no place at all for
the electron spin, let alone the four-components of the Dirac
electron. So Sommerfeld’s correct answer could only be a lucky
accident, a sort of cosmic joke at the expense of serious minded
physicists.”

Biedenharn analyzed Sommerfeld’s method and gives
a surprising explanation for Sommerfeld’s success, thus
showing that Sommerfeld did indeed obtain the right
answer for the right reason.

Biedenharn first explains the agreement of So-
mmerfeld’s nonrelativistic quantum numbers with the
exact answer. This agreement is by no means trivial,
since usually Bohr—Sommerfeld quantization rules yield
quantum number which are shifted by an unknown
numerical constant from the exact ones. In the non-
relativistic Kepler problem there is, however, a quan-
tum-mechanical operator corresponding to the classical
eccentricity. This makes it possible to define the
“spherical” orbits (i.e., those with vanishing eccentricity)
in an unambiguous manner, which gives an absolute
frame of reference for the Bohr—Sommerfeld quantum
numbers.

Second, there is a special reason that Sommerfeld’s
procedure works at all in the relativistic case. In a space-
fixed frame of reference, the relativistic Kepler orbit is
not closed. Rather, the perihel advances in each revo-
lution, which leads to a rosettelike orbit. Sommerfeld
uses a rotating frame of reference, which effects that the
relativistic orbit is again of the form a conic section (i.e.,
an ellipse for the bound states), albeit with an angle
variable different from the nonrelativistic analogue. In
this frame of reference, the phase integral

¢=2n
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with the classical angular momentum p, = mr’¢, can
be used to quantize the angular motion also in the
relativistic case. Biedenharn shows that there is a
quantum-mechanical counterpart to the (classical)
“Sommerfeld transformation” to the moving frame,
such that Sommerfeld’s solution carries over to the exact
treatment.

A third condition is required to explain Sommerfeld’s
success. Biedenharn shows that, surprisingly, the
nonrelativistic problem solved by Sommerfeld is that of
a nonrelativistic particle with (dynamically independent)
spin, rather than a spinless nonrelativistic particle. If the
spinless Schrodinger equation is used, the operator
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analogue for the eccentricity is given by the length of the
Runge-Lenz vector
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where 7 is a unit vector in the direction of the radius
vector, and the other symbols have obvious meanings.
From the commutation relations of A with L, the
relation L? 4+ n?4% + 1 = n? obtains, where for simplicity
we work in a basis of energy eigenfunctions, with
n denoting the principal quantum number. If we solve
for e=(A-A)"? and replace L? by its eigenvalue,
we get
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From this relation we see that (except for n = 1) the
eccentricity does not vanish for orbitals with nodeless
radial probability density, which are characterized by the
condition /=n—1 and correspond to the classical
circular orbits.

If, on the other hand, a dynamically independent spin
is introduced, the appropriate orbital angular momen-
tum operator is

K = (oL +1)

rather than L itself. As is well known from the Dirac
treatment of the relativistic electron, this operator
has eigenvalues x = +1,42,...,. If the commutation
relations of A with K are employed, one arrives at the
relation

n(c-A)? +K>=n? |

and defining the operator analogue of the eccentricity as
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again replacing K> by its eigenvalue x, we arrive at
vanishing eccentricity for orbits, which correspond to
the condition / =n — 1 for nodeless radial probability
density. Moreover, the problem of ““Pendelbahnen”, i.e.,
orbits passing through the nucleus, which had to be
excluded heuristically, does not occur since k cannot be
zero. Sommerfeld himself remarked in his paper (page
21) that ““at this point already a relativistic general-
ization is required 7. In fact, the generalization
required is not a relativistic one, but rather the inclusion
of spin (which was unknown at the time Sommerfeld
wrote his paper). Consideration of spin in the quantum-
mechanical treatment resolves this problem and gives the
right expectation value for the above-mentioned opera-
tor for the eccentricity of spherical orbits.

The same is true for two more special cases, namely
the relativistic particle with spin (yielding the correct
Dirac energy levels), and a relativistic particle without
fine structure. In these cases, the Runge—Lenz vector is
no longer a constant of motion, and the Os symmetry of
the nonrelativistic problem is broken. It is, however, not
“seriously” broken, and an analogue of the Runge—Lenz
vector, the so-called Johnson—Lippman operator [10]
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can be used in lieu of A defined above [11]. This has the
effect that a residual (super) symmetry is left in the en-
ergy levels of Dirac—Kepler problem, which has been
analyzed and explained only recently [12].

The previous discussion shows that neither the spin
nor the operator K are related to relativistic effects (as
is often claimed), but rather they are compatible with
nonrelativistic motion (Galilei group relativity) as well
as relativistic motion (Poincaré group relativity).
This point was also made in several of the papers by
Lévy-Leblond [13].

Besides making implicit use of these really puzzling
properties of the relativistic Kepler problem, the second
major impact of Sommerfeld’s article lies in several
notions introduced which lie at the foundation of
relativistic quantum chemistry and have since been
instrumental in the field: the notion of scalar (kinemat-
ical) relativistic effects versus fine-structure effects, the
introduction of the fine-structure constant, « = e’ /ic,
and the expansion of the relativistic expressions in
powers of the square of this constant. The idea that
relativistic effects decisively influence the structure of the
outer electrons of the atoms is at the root of relativistic
quantum chemistry.

Last but not least, in Sommerfeld’s article, a spirit of
theoretical work is developed which is, on the one hand,
deeply rooted in the experimental observations (making
ample use of the spectroscopic results to derive heuristic
concepts), and on the other hand, is led by the belief that
there is a microscopic explanation for the experimentally
observed phenomena. This paradigm is the foundation
for the physics of the whole of the twentieth century,
including theoretical chemistry. It is interesting to
observe that it was again (this time molecular) spec-

troscopy which turned out to be the field of the first
successes of quantum chemistry, by means of guidelines
very similar to those behind Sommerfeld’s work. The
first one is the quest for the “right answers for the right
reasons’’, even under the conditions of inappropriate
theoretical methods and the need for heuristic concepts,
and the danger that the right reasons will be fully known
only decades later. The second one is the emphasis on
the treatment of “‘real systems”, i.e., systems which are
of current interest for experimentalists. I am personally
convinced that successful work in theoretical chemistry
will continue to build on these guidelines for quite some
time in the century to come.

Invoking those analogies to the development of
theoretical chemistry, Sommerfeld’s paper could be
termed a twentieth century theoretical chemist’s paper,
published long before this branch of science was called
into existence.
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